Fast estimation of regression parameters in a broken-stick model for longitudinal data.

نویسندگان

  • Ritabrata Das
  • Moulinath Banerjee
  • Bin Nan
  • Huiyong Zheng
چکیده

Estimation of change-point locations in the broken-stick model has significant applications in modeling important biological phenomena. In this article we present a computationally economical likelihood-based approach for estimating change-point(s) efficiently in both cross-sectional and longitudinal settings. Our method, based on local smoothing in a shrinking neighborhood of each change-point, is shown via simulations to be computationally more viable than existing methods that rely on search procedures, with dramatic gains in the multiple change-point case. The proposed estimates are shown to have [Formula: see text]-consistency and asymptotic normality - in particular, they are asymptotically efficient in the cross-sectional setting - allowing us to provide meaningful statistical inference. As our primary and motivating (longitudinal) application, we study the Michigan Bone Health and Metabolism Study cohort data to describe patterns of change in log estradiol levels, before and after the final menstrual period, for which a two change-point broken stick model appears to be a good fit. We also illustrate our method on a plant growth data set in the cross-sectional setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data

Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...

متن کامل

Semi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses

Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...

متن کامل

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

A New Nonparametric Regression for Longitudinal Data

In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...

متن کامل

A HYBRID SUPPORT VECTOR REGRESSION WITH ANT COLONY OPTIMIZATION ALGORITHM IN ESTIMATION OF SAFETY FACTOR FOR CIRCULAR FAILURE SLOPE

Slope stability is one of the most complex and essential issues for civil and geotechnical engineers, mainly due to life and high economical losses resulting from these failures. In this paper, a new approach is presented for estimating the Safety Factor (SF) for circular failure slope using hybrid support vector regression (SVR) and Ant Colony Optimization (ACO). The ACO is combined with the S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Statistical Association

دوره 111 515  شماره 

صفحات  -

تاریخ انتشار 2016